skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ucpinar, B Z"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite superconductor electronics (SCE) advantages, the realization of SCE logic faces a significant challenge due to the absence of dense and scalable nonvolatile memory. While various nonvolatile memory technologies, including Non-destructive readout, vortex transitional memory, and magnetic memory, have been explored, designing a dense crossbar array and achieving a superconductor random-access memory remains challenging. This work introduces a novel, nonvolatile, high-density, and scalable vortex-based memory design for SCE logic called bistable vortex memory. Our proposed design addresses scaling issues with an estimated area of 10 × 10 um2while boasting zero static power with the dynamic energy consumption of 12 aJ for single-bit read and write operations. The current summation capability enables analog operations for in-memory or near-memory computational tasks. We demonstrate the efficacy of our approach with a 32 × 32 superconductor memory array operating at 20 GHz. Additionally, we showcase the accumulation property of the memory through analog simulations conducted on an 8 × 8 superconductor crossbar array. 
    more » « less
    Free, publicly-accessible full text available December 19, 2025